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The goal Is to explain the eThe intracratonic basin belongs to a Large

apparent discrepancy between lgneous Province. B
crustal thickness and gravity eDeep crust-mantle interface below the
observation by modeling the Parana basin: 40-46 km (Assumpcao et al.,

internal crustal density 2012; Lloyd et al., 2010; Feng et al., 2007).
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oIt Is not found for the Parana basin.
M ETH O DO L OGY Fig. 2: Gravity field and topography. A: Gravity anomaly calculated at 6200 m (Pall
_ et al., 2011); B: Bouguer Anomaly; C: Topography provided by ETOPO1 (Amante
Our approach integrates:
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0 50 1)The newest gravity data of the satellite mission GOCE (Gravity Ocean Circulation Explorer) provided by model of Pail etal. (2011);
Fig.1 Geological sketch 2)The seismological and geophysical drilling information to determine the Parana basin lithospheric structure.
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Fig. 3: Seismological models: A: Laske et al. (2000): B: Lloyd et al. (2010); C: Assumpcao et al. (2012). lower crust reaching the normal crustal

In recent years different authors have carried out seismologic Fig. 4: Isopachs of the known layers.
Investigations that have produced a Moho crustal thickness model for the
South American plate. The latest model is the crustal thickness according
to Assumpcao et al. (2012), that includes data from active source

thickness of 35 km, with standard
densities of 2670 e 2900 kg/m’,
respectively. The mantle has the density
of 3200 kg/m’. The reference model
corresponds to a standard crustal model
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experiments (deep seismic reflection surveys) and receiver functions, ) y | o N (IASP91, Kennet 1991; Kennet and
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Fig. 6: Inverse modeling. at 6200 m. A) Pre-volcanic sediments. B) Basalt of Serra Geral S | .
Formation. C) Post-volcanic Bauru Group. than ’[he mMass def|C|t |mposed by the Serra Geral Formation. C) Post-volcanic Bauru Group.
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balance, this implies that with
respect to the standard crustal
column, the sediments of the Parana
basin add up to a mass deficit,
notwithstanding the presence of the
basalt layer. The gravity field at
GOCE height cannot appreciate the
small structures as sediment layers.

If the seismologic Moho Is deeper
than the gravity and isostatic Moho, It
means that there Is a densification In
the crust, that has not been
accounted for in our model. If the
selsmolog%lc Moho Is shallower than
the gravity and isostatic Moho, it
means that there Is a density
reduction in the crust.
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Fig. 11: 2D section along profilesillustrating DTM, -~ jnyestigations define the correct geometry, a gravity residual points to density anomalies not contained in the previously published crustal
sei smologic Moho, gravity Moho and isostatic Moho,

and location of profiles. model, and located either in the crust or mantle, according to the involved wavelengths of the residual gravity signal.

DISCUSSIONS AND CONCLUSION

. Already earlier works concerned with the gravity field and the isostatic equilibrium had encountered some evidence of extra-mass to explain the gravity field inthe Parana basin
(Molinaetal., 1987, Vidottietal., 1998)

. However atthe time, no Moho depth estimates were available. The present workis more robustin the sense that seismological data is now available.

. The seismologic investigations have several problems in the eastern South American continent due to the unsymmetric distribution of earthquakes, which are mostly from the
Pacific side of the continent, the Atlantic side being near to aseismic.

e lvrea Verbano area, a crustal section which was below a large volcanic source is exposed, revealing a large magmatic complex extending in the lower crust with amphibole gabbro
and gabbro that form an underplated body that was incorporated into the metamorphic crust (Quick etal., 2009).

. The considerations on the velocity anomalies would suggest the hidden mass to be located in the mid-lower crust, rather than in the upper crust.

. Assuming a fixed density contrast we estimate the thickness of the underplated body by inverting the gravity residual.

. The model assumes the reference depth of the body to be located at 20, 30 or 40 km, and the inversion determines the geometry of the body, given the density contrast.

e Thereference depthdefinesthe top of the body.

o We findthe total thickness of the body to be over 10 km (Fig. 14).

o Thedeeperthe bodyisassumedto be, the bigger its mass must be to explain the gravity residual.

o If the density of the underplated material is greater, then the thickness of the body is proportionally smaller, as can be seenin Fig. 14B, where a density contrast of 300 kg/m’ was
used to illustrate the effect of a varying density.

« Adensity contrast between 100 kg/m’and 200 kg/m’is to be expected when considering the density of gabbro (see Fig. 12) and the density of the normal lower crust (2900 kg/m).
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